Product Code Database
Example Keywords: tie -slippers $53-178
   » » Wiki: Exponential Type
Tag Wiki 'Exponential Type'.
Tag

In , a branch of , a holomorphic function is said to be of exponential type C if its by the exponential function e^{C|z|} for some constant C as |z|\to\infty. When a function is bounded in this way, it is then possible to express it as certain kinds of convergent summations over a series of other complex functions, as well as understanding when it is possible to apply techniques such as , or, for example, to apply the , or to perform approximations using the Euler–Maclaurin formula. The general case is handled by Nachbin's theorem, which defines the analogous notion of \Psi-type for a general function \Psi(z) as opposed to e^z.


Basic idea
A function f(z) defined on the is said to be of exponential type if there exist real-valued constants M and \tau such that

\left|f\left(re^{i\theta}\right)\right| \le Me^{\tau r}

in the limit of r\to\infty. Here, the z was written as z=re^{i\theta} to emphasize that the limit must hold in all directions \theta. Letting \tau stand for the of all such \tau, one then says that the function f is of exponential type \tau.

For example, let f(z)=\sin(\pi z). Then one says that \sin(\pi z) is of exponential type \pi, since \pi is the smallest number that bounds the growth of \sin(\pi z) along the imaginary axis. So, for this example, Carlson's theorem cannot apply, as it requires functions of exponential type less than \pi. Similarly, the Euler–Maclaurin formula cannot be applied either, as it, too, expresses a theorem ultimately anchored in the theory of finite differences.


Formal definition
A holomorphic function F(z) is said to be of exponential type \sigma>0 if for every \varepsilon>0 there exists a real-valued constant A_\varepsilon such that

|F(z)|\leq A_\varepsilon e^{(\sigma+\varepsilon)|z|}

for |z|\to\infty where z\in\mathbb{C}. We say F(z) is of exponential type if F(z) is of exponential type \sigma for some \sigma>0. The number

\tau(F)=\sigma=\displaystyle\limsup_{|z|\rightarrow\infty}|z|^{-1}\log|F(z)|

is the exponential type of F(z). The here means the limit of the of the ratio outside a given radius as the radius goes to infinity. This is also the limit superior of the maximum of the ratio at a given radius as the radius goes to infinity. The limit superior may exist even if the maximum at radius r does not have a limit as r goes to infinity. For example, for the function

F(z)=\sum_{n=1}^\infty\frac{z^{10^{n!}}}{(10^{n!})!}

the value of

(\max_{|z|=r} \log|F(z)|) / r

at r=10^{n!-1} is dominated by the n-1^\text{st} term so we have the asymptotic expressions:

\begin{align}
\left(\max_{|z|=10^{n!-1}} \log|F(z)|\right) / 10^{n!-1}&\sim\left(\log\frac{(10^{n!-1})^{10^{(n-1)!}}}{(10^{(n-1)!})!}\right)/10^{n!-1}\\ &\sim(\log 10)\left(n!-1)10^{(n-1)!}-10^{(n-1)!}(n-1)!\right/10^{n!-1}\\ &\sim(\log 10)(n!-1-(n-1)!)/10^{n!-1-(n-1)!}\\ \end{align}

and this goes to zero as n goes to infinity,In fact, even (\max_{|z|=r}\log \log|F(z)|) /(\log r) goes to zero at r=10^{n!-1} as n goes to infinity. but F(z) is nevertheless of exponential type 1, as can be seen by looking at the points z=10^{n!}.


Exponential type with respect to a symmetric convex body
has given a generalization of exponential type for [[entire function]]s of several complex variables.
     
Suppose K is a , , and subset of \mathbb{R}^n. It is known that for every such K there is an associated norm \|\cdot\|_K with the property that

K=\{x\in\mathbb{R}^n : \|x\|_K \leq1\}.

In other words, K is the unit ball in \mathbb{R}^{n} with respect to \|\cdot\|_K. The set

K^{*}=\{y\in\mathbb{R}^{n}:x\cdot y \leq 1 \text{ for all }x\in{K}\}

is called the and is also a , , and subset of \mathbb{R}^n. Furthermore, we can write

\|x\|_K = \displaystyle\sup_{y\in K^{*}}|x\cdot y|.

We extend \|\cdot\|_K from \mathbb{R}^n to \mathbb{C}^n by

\|z\|_K = \displaystyle\sup_{y\in K^{*}}|z\cdot y|.

An entire function F(z) of n-complex variables is said to be of exponential type with respect to K if for every \varepsilon>0 there exists a real-valued constant A_\varepsilon such that

|F(z)|

for all z\in\mathbb{C}^{n}.


Fréchet space
Collections of functions of exponential type \tau can form a , namely a Fréchet space, by the topology induced by the countable family of norms

\|f\|_n = \sup_{z \in \mathbb{C}} \exp \left-\left(\tau|f(z)|.


See also
  • Paley–Wiener theorem
  • Paley–Wiener space

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs